Initialization Methods – catsim.initialization

All implemented classes in this module inherit from a base abstract class Initializer. Simulator allows that a custom initializer be used during the simulation, as long as it also inherits from Initializer.

Inheritance diagram of catsim.initialization
class catsim.initialization.FixedPointInitializer(start: float)[source]

Bases: Initializer

Initializes every ability at the same point.

initialize(index: int | None = None, **kwargs) float[source]

Returns the same ability value that was passed to the constructor of the initializer

Parameters:

index – the index of the current examinee. This parameter is not used by this method.

Returns:

the same ability value that was passed to the constructor of the initializer

class catsim.initialization.RandomInitializer(dist_type: str = 'uniform', dist_params: tuple = (-5, 5))[source]

Bases: Initializer

Randomly initializes the first estimate of an examinee’s ability

Parameters:
  • dist_type – either uniform or normal

  • dist_params – a tuple containing minimum and maximum values for the uniform distribution (in no particular order) or the average and standard deviation values for the normal distribution (in this particular order).

initialize(index: int | None = None, **kwargs) float[source]

Generates a value using the chosen distribution and parameters

Parameters:

index – the index of the current examinee. This parameter is not used by this method.

Returns:

a ability value generated from the chosen distribution using the passed parameters