Principal component analysis.  
 More...
#include <PCA.hpp>
|  | 
|  | PCA (MatrixD data) | 
|  | Principal component analysis algorithm.  More... 
 | 
|  | 
| void | fit () | 
|  | Finds the principal components of a Matrix.  More... 
 | 
|  | 
| MatrixD | transform () | 
|  | Rotates the data set, using the eigenvectors of the covariance matrix as the new base.  More... 
 | 
|  | 
| MatrixD | transform (int numComponents) | 
|  | Rotates the data set, using the eigenvectors of the covariance matrix with the largest eigenvalues as the new base.  More... 
 | 
|  | 
| const MatrixD & | getEigenvalues () const | 
|  | 
| const MatrixD & | getEigenvectors () const | 
|  | 
| const MatrixD & | getPercentages () const | 
|  | 
| const MatrixD & | getCumPercentages () const | 
|  | 
Principal component analysis. 
Definition at line 18 of file PCA.hpp.
◆ PCA()
Principal component analysis algorithm. 
- Parameters
- 
  
    | data | the matrix whose principal components will be found |  
 
Definition at line 28 of file PCA.hpp.
 
 
◆ fit()
Finds the principal components of a Matrix. 
Eigenvectors and eigenvalues are found via the Jacobi eigenvalue algorithm 
Definition at line 35 of file PCA.hpp.
 
 
◆ getCumPercentages()
  
  | 
        
          | const MatrixD& PCA::getCumPercentages | ( |  | ) | const |  | inline | 
 
 
◆ getEigenvalues()
  
  | 
        
          | const MatrixD& PCA::getEigenvalues | ( |  | ) | const |  | inline | 
 
 
◆ getEigenvectors()
  
  | 
        
          | const MatrixD& PCA::getEigenvectors | ( |  | ) | const |  | inline | 
 
 
◆ getPercentages()
  
  | 
        
          | const MatrixD& PCA::getPercentages | ( |  | ) | const |  | inline | 
 
 
◆ transform() [1/2]
  
  | 
        
          | MatrixD PCA::transform | ( |  | ) |  |  | inline | 
 
Rotates the data set, using the eigenvectors of the covariance matrix as the new base. 
- Returns
- the original dataset rotated using the eigenvectors of the covariance matrix as the new base 
Definition at line 60 of file PCA.hpp.
 
 
◆ transform() [2/2]
  
  | 
        
          | MatrixD PCA::transform | ( | int | numComponents | ) |  |  | inline | 
 
Rotates the data set, using the eigenvectors of the covariance matrix with the largest eigenvalues as the new base. 
- Returns
- the original dataset rotated using the eigenvectors of the covariance matrix with the largest eigenvalues as the new base 
Definition at line 68 of file PCA.hpp.
 
 
◆ cumPercentages
  
  | 
        
          | MatrixD PCA::cumPercentages |  | private | 
 
 
◆ eigenvalues
◆ eigenvectors
  
  | 
        
          | MatrixD PCA::eigenvectors |  | private | 
 
 
◆ percentages
The documentation for this class was generated from the following file: