Machine learning algorithms in C++
Public Types | Public Member Functions | Private Attributes
LeastSquares Class Reference

Ordinary and weighted Least squares algorithm. More...

#include <LeastSquares.hpp>

Collaboration diagram for LeastSquares:

Public Types

enum  RegressionType { REGULAR, WEIGHTED }
 

Public Member Functions

 LeastSquares (MatrixD data, MatrixD labels, RegressionType regType=REGULAR)
 
RegressionType getRegressionType () const
 
void setRegressionType (RegressionType regressionType)
 
void fit ()
 
MatrixD predict (MatrixD m)
 
const MatrixD & getCoefs () const
 
const MatrixD & getResiduals () const
 

Private Attributes

MatrixD X
 
MatrixD y
 
MatrixD coefs
 
MatrixD residuals
 
RegressionType regressionType
 

Detailed Description

Ordinary and weighted Least squares algorithm.

Definition at line 17 of file LeastSquares.hpp.

Member Enumeration Documentation

◆ RegressionType

Enumerator
REGULAR 
WEIGHTED 

Definition at line 19 of file LeastSquares.hpp.

Constructor & Destructor Documentation

◆ LeastSquares()

LeastSquares::LeastSquares ( MatrixD  data,
MatrixD  labels,
RegressionType  regType = REGULAR 
)
inline

Definition at line 26 of file LeastSquares.hpp.

Member Function Documentation

◆ fit()

void LeastSquares::fit ( )
inline

Definition at line 40 of file LeastSquares.hpp.

◆ getCoefs()

const MatrixD& LeastSquares::getCoefs ( ) const
inline

Definition at line 70 of file LeastSquares.hpp.

◆ getRegressionType()

RegressionType LeastSquares::getRegressionType ( ) const
inline

Definition at line 32 of file LeastSquares.hpp.

◆ getResiduals()

const MatrixD& LeastSquares::getResiduals ( ) const
inline

Definition at line 74 of file LeastSquares.hpp.

◆ predict()

MatrixD LeastSquares::predict ( MatrixD  m)
inline

Definition at line 65 of file LeastSquares.hpp.

◆ setRegressionType()

void LeastSquares::setRegressionType ( RegressionType  regressionType)
inline

Definition at line 36 of file LeastSquares.hpp.

Field Documentation

◆ coefs

MatrixD LeastSquares::coefs
private

Definition at line 23 of file LeastSquares.hpp.

◆ regressionType

RegressionType LeastSquares::regressionType
private

Definition at line 24 of file LeastSquares.hpp.

◆ residuals

MatrixD LeastSquares::residuals
private

Definition at line 23 of file LeastSquares.hpp.

◆ X

MatrixD LeastSquares::X
private

Definition at line 23 of file LeastSquares.hpp.

◆ y

MatrixD LeastSquares::y
private

Definition at line 23 of file LeastSquares.hpp.


The documentation for this class was generated from the following file: