Implementation of the k-means algorithm.  
 More...
#include <KMeans.hpp>
Implementation of the k-means algorithm. 
- Author
- Douglas De Rizzo Meneghetti (dougl.nosp@m.asri.nosp@m.zzom@.nosp@m.gmai.nosp@m.l.com) 
- Date
- 2017-10-25 Implementaion of the k-means algorithm 
Definition at line 17 of file KMeans.hpp.
◆ InitializationMethod
◆ KMeans()
◆ fit()
  
  | 
        
          | void KMeans::fit | ( | MatrixD | data, |  
          |  |  | unsigned int | k, |  
          |  |  | unsigned int | iters = 100, |  
          |  |  | unsigned int | inits = 100, |  
          |  |  | double | distance = 2, |  
          |  |  | InitializationMethod | initMethod = SAMPLE, |  
          |  |  | bool | verbose = false |  
          |  | ) |  |  |  | inline | 
 
Find the k centroids that best fit the data. 
- Parameters
- 
  
    | data | a Matrix containing the data |  | k | number of clusters to be generated |  | iters | number of maximum assignment/adjustment iterations |  | inits | number of algorithm reinitialization |  | distance | L norm of the distance measure to be used (1 for Manhattan, 2 for Euclidean etc.) |  | initMethod | centroid initialization method |  | verbose | whether to output progress or not |  
 
Definition at line 72 of file KMeans.hpp.
 
 
◆ getCentroids()
  
  | 
        
          | const MatrixD& KMeans::getCentroids | ( |  | ) | const |  | inline | 
 
 
◆ getDistance()
  
  | 
        
          | double KMeans::getDistance | ( |  | ) | const |  | inline | 
 
 
◆ getK()
  
  | 
        
          | unsigned int KMeans::getK | ( |  | ) | const |  | inline | 
 
 
◆ getSse()
  
  | 
        
          | double KMeans::getSse | ( |  | ) | const |  | inline | 
 
 
◆ getTotalIterations()
  
  | 
        
          | unsigned int KMeans::getTotalIterations | ( |  | ) | const |  | inline | 
 
 
◆ getY()
  
  | 
        
          | const MatrixD& KMeans::getY | ( |  | ) | const |  | inline | 
 
 
◆ predict()
  
  | 
        
          | MatrixD KMeans::predict | ( | MatrixD | data | ) |  |  | inline | 
 
Assigns elements of a data set to clusters. 
- Parameters
- 
  
    | data | a Matrix containing elements in rows and features in columns |  
 
- Returns
- column vector with the index of clusters each element is assigned to 
Definition at line 41 of file KMeans.hpp.
 
 
◆ SSE()
- Returns
- Sum of squared errors between elements and their centroids 
Definition at line 29 of file KMeans.hpp.
 
 
◆ centroids
  
  | 
        
          | MatrixD KMeans::centroids |  | private | 
 
 
◆ distance
◆ initMethod
◆ sse
◆ totalIterations
  
  | 
        
          | unsigned int KMeans::totalIterations |  | private | 
 
 
The documentation for this class was generated from the following file: