
DETECTING SOCCER BALLS WITH REDUCED NEURAL NETWORKS:
A COMPARISON OF MULTIPLE ARCHITECTURES UNDER

CONSTRAINED HARDWARE SCENARIOS

Douglas De Rizzo Meneghetti
Department of Electrical Engineering

FEI University Center
São Bernardo do Campo, SP 09850-901

douglasrizzo@fei.edu.br

Thiago Pedro Donadon Homem
Federal Institute of Education, Science and Technology of São Paulo

São Paulo, SP 05110-000
thiagohomem@ifsp.edu.br

Jonas Henrique Renolfi de Oliveira
Department of Electrical Engineering

FEI University Center
São Bernardo do Campo, SP 09850-901

jonashro@gmail.com

Isaac Jesus da Silva
Department of Electrical Engineering

FEI University Center
São Bernardo do Campo, SP 09850-901

isaacjesus@fei.edu.br

Danilo Hernani Perico
Department of Electrical Engineering

FEI University Center
São Bernardo do Campo, SP 09850-901

dperico@fei.edu.br

Reinaldo Augusto da Costa Bianchi
Department of Electrical Engineering

FEI University Center
São Bernardo do Campo, SP 09850-901

rbianchi@fei.edu.br

Jan. 4, 2021

ABSTRACT

Object detection techniques that achieve state-of-the-art detection accuracy employ convolutional
neural networks, implemented to have lower latency in graphics processing units. Some hardware
systems, such as mobile robots, operate under constrained hardware situations, but still benefit from
object detection capabilities. Multiple network models have been proposed, achieving comparable
accuracy with reduced architectures and leaner operations. Motivated by the need to create a near
real-time object detection system for a soccer team of mobile robots operating with x86 CPU-only
embedded computers, this work analyses the average precision and inference time of multiple object
detection systems in a constrained hardware setting. We train open implementations of MobileNetV2
and MobileNetV3 models with different underlying architectures, achieved by changing their input
and width multipliers, as well as YOLOv3, TinyYOLOv3, YOLOv4 and TinyYOLOv4 in an annotated
image dataset captured using a mobile robot. We emphasize the speed/accuracy trade-off in the
models by reporting their average precision on a test data set and their inference time in videos at
different resolutions, under constrained and unconstrained hardware configurations. Results show
that MobileNetV3 models have a good trade-off between average precision and inference time in
constrained scenarios only, while MobileNetV2 with high width multipliers are appropriate for
server-side inference. YOLO models in their official implementations are not suitable for inference in
CPUs.

Keywords Object detection · Convolutional neural networks ·Mobile robots · Constrained hardware



A PREPRINT - JAN. 4, 2021

1 Introduction

The recent successes in the field of object detection are mostly due to the use of deep neural networks, more specifically
convolutional neural networks (CNN). The underlying operations that compose CNNs are highly optimized for fast
execution in graphics processing units (GPU). However, in some domains, GPUs may be unavailable and these processes
must be executed in CPUs. One such domain is mobile robotics, comprised of systems such as autonomous terrestrial,
aerial or underwater vehicles, as well as specialized units, such as humanoid robots. These systems may be subject to
limitations regarding space, weight and energy consumption, constraining the robot’s hardware to contain only CPUs,
thus hindering the performance of systems based on deep learning techniques.

With these limitations in mind, this work presents an empirical and comparative analysis of the performance of recent
CNN architectures proposed for constrained hardware settings and applied to object detection tasks, with the goal of
emphasizing the speed/accuracy trade-off present in current models. Motivated by the creation of a near real-time
soccer ball detection system to be executed in mobile robots equipped with embedded computers, that contain only
CPUs under an x86 architecture and no graphics processing units, we train multiple models in the same annotated image
dataset and compare their average precision (AP) in a test data set, as well as their inference times in both constrained
and unconstrained hardware settings.

In preceding work [1], we presented a similar analysis of MobileNetV1, a CNN whose architecture was optimized for
low latency inference in mobile phones, adapted for the task of object detection in an Intel NUC mini-PC equipped with
a Core-i7 CPU. Here, we expand our work by analyzing MobileNetV2 [2] and MobileNetV3 [3], models that incorporate
more recent advances in deep learning research to their architectures in order to achieve even lower latency in CPU-only
mobile systems. We focus on benchmarking the performance of both architectures under different combinations of their
width and input multipliers, two hyperparameters that control the underlying architecture of the MobileNets. In this
work, we also include the YOLOv3 [4] and YOLOv4 [5] object detection models and their “tiny" counterparts, due to
also being one-stage CNN-based object detectors.

With this study, we aim to fill an information gap related to the performance of the selected CNN models and object
detection techniques, which are aimed at fast and accurate inference in mobile systems, when executed in a hardware
platform typically used in mobile robots. In the case of the MobileNets, we investigate how a change in their width and
input multipliers, two hyperparameters that control the overall topology of the model, affect their final accuracy and
latency in the proposed task and hardware. For YOLO, we showcase their performance in the same task, as well as
corroborate their high latency when executed in CPUs, especially less powerful ones.

We also expect, given our use case, to provide useful information to teams who participate in humanoid soccer
competitions, regarding the capabilities of the selected models to perform near real-time inference with acceptable
precision in a dataset with relevant applications to the competition. More broadly, this study is also aimed towards
guiding the choice of a low latency, high accuracy object detection model to be executed in embedded computers with
an x86 architecture, with a focus on recent MobileNet models that perform object detection using the Single Shot
MultiBox Detector (SSD) [6] method, and multiple YOLO and TinyYOLO implementations.

This work also investigates the latency of the selected implementations of the models by gathering their inference
times when processing videos in multiple input resolutions. These measurements are done in both constrained and
unconstrained environments, providing readers with more relevant results to make decisions regarding the choice of
neural network model to use in a single-object detection system under local, mobile, constrained hardware scenarios,
but also accounting for situations in which remote and/or unconstrained hardware configurations may be available.

The text is organized as follows: section 2 lists the recent advances in the state-of-the-art in object detection, as well
as techniques to create smaller network topologies while still maintaining high detection accuracy. We also describe
the network architectures utilized in this work and their detection mechanisms. Section 3 depicts related works. The
experimental methodology is presented in section 4. Results are presented and discussed in section 5. Lastly, section 6
provides the conclusions and future work.

2 Research Background

In recent years, object detection techniques have advanced at great pace due to the equally fast advances of deep learning
and convolutional neural networks applied to computer vision [7]. Two-stage detectors such as Faster R-CNN [8]
first generate region proposals and then detect objects only in the selected regions, while one-stage detectors such as
YOLO [9] and SSD [10] generate bounding box coordinates and class predictions at the same time, with YOLO using
only convolutional layers for this task.
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More recently, effort has centered around building strategies for efficiently scaling network models, reaching a trade-off
between FLOPS, number of trainable parameters and accuracy. The MobileNetV3 architecture [3] has been partially
achieved via hardware-aware neural architecture search techniques [11, 12], while AmoebaNet’s architecture [13],
which achieved state-of-the-art classification accuracy on ImageNet [14], was evolved using evolutionary algorithms.

Other techniques attempt to shrink or expand the dimensions of convolutional layers using hyperparameters. Mo-
bileNetV1 [10] introduced the width multiplier and input resolution parameters, discussed later in the text, while
EfficientNet [15] and EfficientDet [16] use a compound coefficient to scale all three dimensions of convolutional
layers in order to maximize the network’s accuracy. This, allied with neural architecture search, introduced the current
state-of-the-art in image classification and object detection using CNNs.

2.1 MobileNets

MobileNets [10] are convolutional neural network architectures whose number of trainable parameters can be controlled
by two hyperparameters. The first is the width multiplier α ∈ (0, 1], which controls the number of channels in each
layer of the network. Smaller values of α reduce the number of parameters in each layer of the network uniformly, also
reducing computational cost. The second parameter is the resolution multiplier ρ ∈ (0, 1], which is used to reduce the
resolution of the input images and, consequently, the number of operations throughout all layers of the network.

Additional features introduced in MobileNetV1 are batch normalization [17] for learning stabilization, as well as
depthwise-separable convolutions [18], a convolution operation that uses fewer parameters to achieve comparable
results to regular convolutions.

MobileNetV2 [2] advanced the state-of-the-art by introducing linear bottleneck layers in the network, reducing the size
of the inputs in subsequent layers while preventing information from being lost by non-linear activation functions. The
ReLU6 non-linearity [19] was chosen instead of regular ReLU to prevent loss of information when calculations with
low-precision data types are performed.

Finally, the MobileNetV3 [3] builds upon MobileNetV2 and MnasNet [12] by using Mobile Neural Architecture
Search (MNAS) [12], an algorithm that manipulates blocks of layers in the network, with the goal of maximizing
accuracy while ensuring inference is conducted under a latency budget. The architecture is further simplified by the use
of the NetAdapt algorithm [11], which reduces the number of filters in each layer of each block created by MNAS,
further reducing network latency while trying to minimally affect network accuracy. For each iteration that either NAS
algorithm is applied to the current network, its inference latency is measured in a mobile phone to ensure that the
resulting model architecture is optimized for that type of hardware [3].

Both MobileNetV2 as well as the gradual enhancements performed in MobileNetV3 have their latency measured in the
ARM-based processor of the Google Pixel 1 [2, 3]. In this work, we expect the performance gain achieved by these
enhancements to also be visible in our target hardware, which differs from the original hardware the networks were
tested on.

2.2 Single-Shot MultiBox Detector

The Single-Shot MultiBox Detector (SSD) [6] is a technique that utilizes a convolutional neural network, called the
base network, combined with multiple subsequent convolutional filters of different sizes, to perform detection under
different scales and aspect ratios in multiple regions of an input image. The feature maps of the base network may be
pretrained in a classification or detection class. When training the network for a detection task, SSD employs techniques
such as data augmentation and hard negative mining for faster training, as well as a loss function that is a weighted sum
of both localization and classification losses.

2.3 You Only Look Once

You Only Look Once (YOLO) [9] simplified the object detection problem, which was then composed of a region
proposal step followed by an image classification step, to a single regression step composed of bounding box coordinates
and class probabilities. YOLOv2 [20] introduced the use of anchor boxes to the algorithm, a technique that allowed the
detection of multiple objects with different aspect ratios in the same quadrant of an input image, using only convolutional
layers.

YOLOv3 [4] introduces the prediction of bounding box coordinates across multiple scales and the use of residual
layers [21] to speed up training, while YOLOv4 [5] adapts multiple data augmentation and feature extraction techniques
to allow efficient training and inference of a model on a single GPU with 8 to 16 GB of VRAM.
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3 Related Work

This work lies at the intersection of two problems, which may be considered complementary to each other. The
first is the execution of computer vision tasks in embedded computers, which introduces complications regarding
energy efficiency, storage and memory capacity and processing power. The second relates to compressing, reducing or
simplifying a CNN model to achieve lower latency while sacrificing as little model accuracy as possible.

3.1 Neural network reduction strategies

One way to make neural network inference feasible in embedded computers is to use techniques that simplify existing
network architectures before deployment in the constrained hardware. The goal of this approach is to either reduce the
amount of memory necessary to store the model; the number of multiply–accumulate operations (MAC) in a forward
pass of the network, or other more direct metrics, such as the wall-clock inference time. Given the possible loss in
representation power of the model resulting from its reduction, a loss of accuracy in the target task is usually expected
as trade-off.

One model reduction technique is network pruning [22], which consists in the detection and removal of low-valued
weights from a network model, followed by the retraining of the network, promoting the re-purposing of the remaining
weights. There have been works that have applied pruning in order to make network models more fitting to be executed
on embedded systems [23, 24].

Another approach to reduce the memory necessary to store a neural network is the quantization of the network’s
parameters [25], a technique which consists in representing numbers from a range of values by a less precise subset of
values, consuming less memory and possibly making operations simpler. A more extreme approach to quantization
are the binary neural networks [26, 27], whose weights are represented by sets of binary or ternary values, enabling
straightforward implementation of the models direct in the hardware level, at the cost of unstable training and reduced
precision. Other works have already covered the applications of quantization [28, 29, 30] and binarization [29] of
networks for use in embedded systems.

Model compression [31, 32], also known as knowledge distillation [33] is a process in which one shallow network
(called the student) learns to imitate the output of one or more networks with more complex architectures (the teachers),
achieving better results than if trained directly in the source dataset. This is usually done by using the predictions of the
teacher models to classify or generate synthetic dataset, which is then used to train the student model. Thus, the student
learns to approximate the function modeled by teacher ensemble instead of the function that represents the original data,
which may be more accurate.

There have also been works that focus on representing neural network weights in alternative ways, e.g. using low-
rank approximations of the weight matrices [34]. However, these techniques may require domain knowledge to be
implemented without side-effects. Another option is to rethink the operations that compose the neural networks. One
example of relevance to this work are depthwise separable convolutions [18, 35], which decompose the standard
convolution operation applied to multiple channels into multiple single-channel convolutions, followed by a single
pointwise convolution that joins the results from multiple channels. Depthwise separable convolutions are used in
MobileNetV2 and V3, which are analyzed in this work.

Neural architecture search is yet another family of techniques aimed towards adapting a network’s architecture
according to an optimization objective and algorithm. A relevant example to this work is MNAS [12], a reinforcement
learning-based technique which aims to maximize model accuracy and minimize wall-clock latency in mobile devices.

For individual works that build upon the aforementioned network reduction techniques, the reader is pointed to surveys
on the topic [36, 34, 37].

3.2 CNNs in embedded systems

Due to the relative novelty of the use of deep convolutional neural networks in computer vision tasks, their transposition
to more specialized and energy-efficient hardware is an ongoing topic of research. One category of such specialized
hardware are the portable NVIDIA Jetson development boards, equipped with an ARM CPU and CUDA-capable GPU.
There have been MobileNetV1 [38] and V2 [39] implementations aimed towards object detection tasks in Jetson boards,
as well as Fast R-CNN [40] and Faster R-CNN [41].

Previous work [42] has analyzed the inference time of multiple CNNs in image classification tasks under the Jetson
TX1. A linear upper bound was observed when comparing model accuracy with inference time, i.e. models that took
longer to perform a forward pass on an image were more accurate and the relation between both quantities was linear.
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In order to minimize memory usage and accelerate convolutions in the Jetson TX1, another work [23] explores the
representation of CNN weights as sparse matrices and the use of different sparse matrix multiplication algorithms as
alternatives to the convolution operation.

There have also been efforts to implement CNNs in field-programmable gate arrays (FPGA), such as the proposal
of toolsets and methods to convert, accelerate and analyze the latency and precision of CNN operations in the new
hardware [43, 44]. A common trend in these works is the observation of a negligible loss of precision due to the
quantization of the parameters of the network [29, 44], which is greatly offset by a considerable gain in terms of energy
efficiency and latency. Some works report a speed up of 10 to 16 times in inference when compared to executing the
same architectures in the aforementioned Jetson boards [45, 44].

Another work [46] similar to this one has analyzed YOLOv3, YOLOv4, TinyYOLOv3, TinyYOLOv4 and a custom
network both in a server equipped with an Intel Xeon E5-2678 v3 and an NVIDIA GeForce GTX 1080Ti, as well as a
Raspberry Pi 3B. Like this work, they have reported prohibitively high inference times in their constrained hardware,
ranging from 3.225 seconds to 5.555 seconds when doing a forward pass in a single image. Unlike them, we provide an
alternative with faster inference times for our constrained hardware.

3.3 Discussion

This section has presented related works in two main areas of which this work is an intersection of: neural network
reduction techniques and the execution of neural networks in embedded devices.

This work differs from its related works by focusing on the analysis of convolutional network architectures applied
to object detection tasks in mobile computers with an x86 architecture processor. More specifically, we analyse the
MobileNetV2 and V3 neural networks in a different target hardware than their original one and how their precision
and inference times differ when a set of hyperparameters that dictate their architectures (input and width multipliers)
change. We also provide the same analysis for the YOLOv3, YOLOv4, TinyYOLOv3 and TinyYOLOv4 networks, due
to their prominence in object detection tasks with high frame rate needs.

4 Experimental Methodology

This study is motivated by the development of a computer vision system for an autonomous humanoid robot, which
provides the robot with the capabilities of detecting soccer balls in a time that is compatible with the dynamics of
the game. The target hardware of the vision system is CPU-only embedded computer of the x86 architecture, such
as a mini-PC. We identify two properties that are desirable in an object detection system, given the aforementioned
requirements. The first is high detection accuracy, a desirable feature in all object detection systems. The second is low
latency, providing the robot with updated object locations under actionable intervals of time.

These two properties can be considered opposite, since higher accuracy usually indicates a more complex model, with
more layers and operations. Also, when working with mobile robots and embedded computers, there is a tendency
towards employing simpler machine learning models, in order to achieve acceptable operating thresholds with regards
to time and power consumption, while sacrificing as little precision as possible.

To compose a detection system with low latency and high accuracy, we have selected multiple recent neural network
architectures developed for computer vision tasks which attempt to reach a balance between both properties. Models
were selected according to their performance in object detection tasks, their availability for the x86 processor architecture
and homogeneity in pretraining in the MSCOCO [47] dataset.

The remainder of this section describes the selected neural network models; the image dataset used to train the models
and analyze their performance; the humanoid robot our experiments are geared towards (with no loss of generality over
other x86 embedded systems); and the hardware used for training, as well as the different hardware used for testing the
models under constrained and unconstrained scenarios, providing even more broad and informative results.

4.1 Network architectures and training

Twenty MobileNetV2 configurations were tested by modifying the values for the width and resolution multipliers. For
the width multiplier, the values 1, 0.75, 0.5 and 0.35 were used, resulting in networks with 3.47, 2.61, 1.95 and 1.66
million trainable parameters, respectively. The values used for the resolution multiplier were chosen so that the input
resolution of the network is equal to 224, 192, 160, 128 and 96. The combined values of both hyperparameters resulted
in a total of twenty models that were trained using the soccer ball dataset, described on section 4.2.
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MobileNetV3 [3] models are composed of the “Large” and “Small” variants, both with width multipliers of 1 and 0.75,
possessing 5.4 (Large, α = 1), 4 (Large, α = 0.75), 2.9 (Small, α = 1) and 2.4 million (Small, α = 0.75) trainable
parameters, as well as minimalistic versions of both variants with α = 1, possessing 3.9 and 2 million parameters.
Minimalistic models do not contain the more advanced squeeze-and-excite units, hard-swish, and 5× 5 convolutions
operations from the non-minimalistic counterparts. YOLO models are composed of the v3 [4] and v4 [5] versions of
the neural networks, as well as their “tiny” counterparts.

The MobileNet implementations selected for this work are provided in the TensorFlow Object Detection API [48],
while YOLO is provided in the original paper implementation [5]. All models used pretrained weights learned in the
COCO dataset [47].1

4.2 Image dataset

The dataset used in this work [49]2 consists of 4364 images in 1920× 1080 resolution, collected from the point-of-view
of the humanoid robot described in section 4.4. A fish-eye lens is used to maximize the field of view of the robot and so
all images in the dataset also inherit this feature.

Of the 4364 images, 4014 compose the annotated training set and 250, the annotated test set. In these sets, the soccer
balls visualized by the robot have been marked with bounding boxes. The training and test sets were collected from
different sets of videos, with the purpose of minimizing data correlation.

Each image contains a single soccer ball, captured under multiples lighting conditions, as well as at different angles and
distances from the camera. There are pictures of both stationary and moving soccer balls. Figure 1b presents examples
of the dataset.

4.3 Training procedure

The models were trained in a server with Intel Xeon Gold 5118@2.3 GHz processors totaling 48 CPUs, 192 GB of
RAM and an NVIDIA Tesla V100-PCIE with 16 GB of memory, running CentOS 7.6.1810. The MobileNet models
were trained for 50000 training steps. The YOLO and TinyYOLO models were trained for a total of 6000 training steps,
following recommendations from the original developers of the model, given the number of classes to be detected.

All MobileNetV2 models were trained using batches of 32 images and the RMSProp optimizer with initial learning
rate of 4 · 10−3, an exponential decay schedule with a decay factor of 0.95 and a momentum coefficient of 0.9. All
MobileNetV3 models were trained using batches of 32 images, stochastic gradient descent with initial learning rate of
0.4, a cosine decay schedule and a momentum coefficient of 0.9.

YOLO and TinyYOLO models were trained using batches of 64 images, stochastic gradient descent with a momentum
coefficient of 0.9. YOLOv3 and TinyYOLOv3 models used a learning rate of 10−3, while YOLOv4 and TinyYOLOv4
used a learning rate of 2 · 10−3. Two step decays at 80% and 90% of the training were applied to these learning rates.

4.4 Humanoid Robot

Our use case for this work is a mobile humanoid robot built for the task of playing soccer. One of its capabilities is
the detection of soccer balls through visual inputs. The robot weighs about 5.9 kg and measures 81 cm in height. It is
composed of 19 Dynamixel servomotors (a combination of MX-64, MX-106 and XM430 models), totaling 19 degrees
of freedom. The humanoid robot uses a Genius WideCam F100 (Full HD) camera for image capture and a CH Robotics
UM7 orientation sensor. The center of mass has a height of 36.1 cm and the robot has a foot area of 174 cm2. Other
measurements include 39.5 cm of shoulder length, 38.5 cm of leg height, 18.8 cm of neck height and 38.5 cm of arm
length. The robot is equipped with an Intel NUC Core i7 mini-PC. A picture of the robot is presented in Figure 1a.

4.5 Performance metrics

To evaluate the performance of the selected models in both time and correctness, we gathered their average precision
and inference time during the experiments. The meaning of these two measures is explained in this section.

1In order to facilitate the replication of these results and encourage the development of similar approaches by other researchers, the
software used in this paper is available for download at: https://github.com/douglasrizzo/JINT2020-ball-detection.

2The dataset was also made available at http://ieee-dataport.org/open-access/open-soccer-ball-dataset
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(a) One of the teen-sized robots of the RoboFEI
team

(b) Examples of images from the soccer ball dataset

Figure 1: Image dataset and humanoid robot used to collect it.

4.5.1 Average precision

In this work, both ground-truth annotations and predictions are represented as rectangular bounding boxes. Given a
predicted rectangle A and a ground truth rectangle B, it is possible to calculate a similarity measure between both
rectangles, called intersection over union (IoU),

IoU =
(A ∩B)

(A ∪B)

When the IoU among both rectangles surpasses a certain threshold t, the detection represented by A is considered a
true positive (TP). Otherwise, if no other predicted rectangle has an acceptable IoU ≥ t wrt. B, the failed detection is
considered a false negative (FN). Lastly, all predicted boxes which have IoU < t for all ground truth boxes in an image
are considered false positives (FP). These quantities allow us to calculate a detector’s precision and recall,

Precision =
TP

TP + FN
, Recall =

TP

TP + FP
.

By ordering all predictions in order of decreasing confidence and calculating precision and recall at each new prediction,
we arrive at a monotonically decreasing precision/recall (PR) curve. Average precision (AP) is the area under the PR
curve. It is a single-valued metric which summarizes model performance when retrieving objects of a single class.

4.5.2 Inference time

In this work, inference time is defined as the time it takes a detection model to generate predictions for a given input
image, in milliseconds. To get a more accurate measure, all models operated over a 30-second video taken from the
robot’s point-of-view and the inference time of the model is taken as the average time over all frames of the video.
Experiments were conducted in the same video at the native resolution of 1920× 1080 pixels, as well as other versions
scaled down to 1280× 720, 640× 480 and 480× 360 pixels. All networks then processed these four versions of the
same video and the mean inference time over all frames of each video for each network was recorded.
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Table 1: Average precision (higher is better) and inference time in milliseconds (lower is better) of the trained models.
The five best in each category are marked in bold.

Width Input Inference time (ms)
Network mult. res. AP Core i5 V100 Xeon

MobileNetV2

0.35

96 0.4065 99.964 65.37 64.959
128 0.7095 101.166 51.062 49.642
160 0.6304 88.651 52.642 50.97
192 0.6756 87.006 53.613 52.232
224 0.4984 78.553 42.852 41.703

0.5

96 0.4065 91.403 58.919 57.626
128 0.6986 81.08 44.529 43.388
160 0.3361 91.775 58.288 58.616
192 0.0944 116.076 65.629 64.828
224 0.3253 78.624 42.759 43.18

0.75

96 0.7284 86.569 51.065 51.528
128 0.6954 84.159 42.097 41.866
160 0.6679 81.351 41.883 42.309
192 0.6952 78.699 42.347 41.776
224 0.7874 85.186 48.343 47.854

1

96 0.8133 122.853 56.992 57.83
128 0.7672 82.277 46.921 47.799
160 0.8597 88.886 52.278 52.569
192 0.3632 110.75 61.263 60.052
224 0.8177 79.547 42.438 42.183

MobileNetV3 (large min.) 1 224 0.6007 85.808 58.706 59.581
MobileNetV3 (large) 0.75 224 0.8847 89.362 63.515 63.703
MobileNetV3 (large) 1 224 0.6875 120.045 88.017 91.369

MobileNetV3 (small min.) 1 224 0.6024 79.142 48.68 49.236
MobileNetV3 (small) 0.75 224 0.7067 60.654 49.328 47.741
MobileNetV3 (small) 1 224 0.8651 96.975 70.689 70.017

TinyYOLOv3 0.3381 588.235 33.557 85.47
TinyYOLOv4 0.3504 714.286 29.851 119.048

YOLOv3 0.1355 5000 44.248 588.235
YOLOv4 0.1419 5000 50 833.333

4.6 Constrained hardware for inference

The constrained hardware configuration in which the inference time of the models was captured is equipped with an
i5-4210U CPU @ 1.70GHz and 8 GB of RAM and no GPU, in line with the hardware typically used by an autonomous
mobile robot. For comparison purposes, the same experiments were performed in the training computer, under GPU and
CPU-only settings. In all cases, when CPU-only experiments were executed, all CPU cores were allowed to be utilized.

5 Results

Table 1 displays the AP of all trained models in the test set, as well as the inference time in milliseconds for different
hardware configurations. In this table, the inference time was calculated with the videos in their native 1920× 1080
resolution. These results allow us to conclude that the canonical YOLOv3 and YOLOv4 implementations, as well as
their tiny counterparts, are not optimized for inference on CPUs, achieving the highest inference times of all models in
the Intel Core i5-4210U. In fact, it is stated by the author of the model [5] that their implementations are optimized for
inference in single GPUs. This can be seen by the comparatively low times achieved in the Tesla V100 GPU, especially
by the TinyYOLO models, which achieved the lowest inference times of all models.

As for the MobileNet models, we can see that MobileNetV3 and MobileNetV2 with α = 1 achieved the highest AP in
the test data set. However, with the high variation in inference times between all combinations of hyperparameters, the
results from Table 1 alone do not provide enough information to compare model performances. To remedy that, we
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Table 2: Normalized scores of the trained models under different hardware. Higher is better. A normalized score of 1
indicates that the model performed the best under that hardware, compared with the others.

Width Input Normalized score
Network mult. res. Core i5 V100 Xeon

MobileNetV2

0.35

96 0.349 0.323 0.323
128 0.602 0.721 0.737
160 0.61 0.622 0.638
192 0.666 0.654 0.667
224 0.545 0.604 0.617

0.5

96 0.382 0.358 0.364
128 0.74 0.814 0.831
160 0.314 0.299 0.296
192 0.07 0.075 0.075
224 0.355 0.395 0.389

0.75

96 0.722 0.74 0.729
128 0.709 0.857 0.857
160 0.705 0.828 0.814
192 0.758 0.852 0.858
224 0.793 0.845 0.849

1

96 0.568 0.741 0.726
128 0.8 0.849 0.828
160 0.83 0.853 0.844
192 0.281 0.308 0.312
224 0.882 1 1

MobileNetV3 (large min.) 1 224 0.601 0.531 0.52
MobileNetV3 (large) 0.75 224 0.85 0.723 0.716
MobileNetV3 (large) 1 224 0.492 0.405 0.388

MobileNetV3 (small min.) 1 224 0.653 0.642 0.631
MobileNetV3 (small) 0.75 224 1 0.744 0.764
MobileNetV3 (small) 1 224 0.766 0.635 0.637

TinyYOLOv3 0.049 0.523 0.204
TinyYOLOv4 0.042 0.609 0.152

YOLOv3 0.002 0.159 0.012
YOLOv4 0.002 0.147 0.009

calculate a performance score for each neural network in each hardware setting pm,h = APm
tm,h

, where APm represents
the AP of network m (a value that is hardware-independent) and h, the hardware setting the inference time t of model
m was gathered from. Then, the performance scores of all models in the same hardware are normalized by the highest
performance score in that hardware, leading to the normalized score sm,h =

pm,h
maxη pη,h

. Achieving a normalized score
sm,h = 1 means that model m had the highest AP/inference time ratio off all models in hardware h.3

Table 2 presents the normalized scores of all models. Overall, MobileNetV2 models with width multipliersα ∈ {0.75, 1}
had the best scores of all MobileNetV2 models in all hardware settings. We can also see that the five best models in
unconstrained hardware settings are the same for both CPU and GPU. However, when operating under the Intel Core
i5 4210U processor, both MobileNetV3 models (large and small) with α = 0.75 achieved the highest scores, making
MobileNetV3 models a viable option for an object detection system that operates under constrained hardware settings,
whereas they did not exhibit the same performance in GPUs.

3This score may easily break or be less informative if one neural network in the sample has disproportionately low inference time
or high AP. However, given the well-behaved values presented in Table 1, we consider the use of the proposed score appropriate for
the purposes of our analysis.
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Table 3: Inference time of YOLO and TinyYOLO models when processing videos of multiple input resolutions.
Inference time

Network Hardware mean std. dev.

TinyYOLOv3
Tesla V100 41.957 10.022

Xeon Gold 5118 88.983 3.369
i5-4210U 588.235 0.000

TinyYOLOv4
Tesla V100 38.808 9.136

Xeon Gold 5118 114.529 6.094
i5-4210U 714.286 0.000

YOLOv3
Tesla V100 46.726 4.081

Xeon Gold 5118 588.235 0.000
i5-4210U 5000.000 0.000

YOLOv4
Tesla V100 50.385 0.676

Xeon Gold 5118 817.308 32.051
i5-4210U 5000.000 0.000

5.1 Performance with different input video resolutions

This section presents the inference times in milliseconds of all model implementations when processing input videos
of several resolutions (1920 × 1080, 1280 × 720, 640 × 480, 480 × 360). Table 3 presents the mean and standard
deviation of the inference time of all YOLO models for the tested hardware configurations. Overall, all YOLO and
TinyYOLO models achieved low standard deviation in this test, implying that their implementation [5] is indifferent to
the input resolution of images.

As for the MobileNet results, we first discuss the distributions of results in the three hardware settings. In total,
104 values were collected in each setting (twenty V2 and six V3 models applied to videos in four resolutions),
with the following means and standard deviations: µi5 = 68.292, σi5 = 17.374, µV100 = 47.24, σV100 = 8.756,
µXeon = 47.009 and σXeon = 8.981.

Due to the similarity in the inference times collected from the NVIDIA Tesla V100 GPU and the Intel Xeon Gold 5118,
we executed a two-sample Kolmogorov-Smirnov test between the two samples, with a result of p = 0.97371, indicating
that the measurements collected in the 48 quad-core CPUs and the single GPU are similar with high statistical relevance.
Because of that, in this section we only report results for the MobileNets in the NVIDIA Tesla V100 GPU and the Intel
i5-4210U processor.

The distance between µi5 and µV100 is indicative of the performance lost by executing deep learning models in
constrained CPUs, while a larger standard deviation on the CPU (σi5) indicate that there is a larger variation in network
performance, given the resolution of the input video.

Figures 2 and 3 present a series of boxplots containing the inference time by frame in milliseconds for the MobileNets
when processing the same video under multiple resolutions in the Intel i5-4210U CPU and the NVIDIA Tesla V100
GPU, respectively. The central line in each box represents the median value in the group; boxes represent the first and
third quartiles of the data; and whiskers represent the minimum and maximum acceptable range, whereas dots outside
the whiskers are considered outliers.

In all of the figures, it is possible to observe a gradual decrease in inference time as the resolution of the input videos
decreases. This information may be relevant, as the largest input resolution used by a MobileNet model is 224× 224.
Furthermore, the implementations used in this work [48] already operate in downscaled images, with a resolution of
300× 300 pixels. Both of these observations indicate that using a low-resolution input feed for object detection is a
valid strategy to achieve lower inference times. This speedup is visualized in both constrained CPU and GPU settings.

To discover whether the distributions presented in Figures 2 and 3 can be considered different with statistical significance,
a series of one-way analysis of variance (ANOVA) tests were performed, whose results can be viewed in Table 4. We
can see that MobileNetV2 is sensitive to the input resolution hyperparameter only when inference is done on a GPU
and not the constrained CPU.

The other results in Table 4 also confirm that there is a difference in feeding video frames in different resolutions to the
TensorFlow implementations of the MobileNets. MobileNetV2 demonstrated statistically significant differences both
on the constrained CPU and the GPU, while MobileNetV3 demonstrated statistically significant differences only in the

10



A PREPRINT - JAN. 4, 2021

480 x 360 640 x 480 1280 x 720 1920 x 1080
Video res.

50

60

70

80

90

100

110

120

In
fe

re
nc

e 
tim

e

Input res.
96.0
128.0
160.0
192.0
224.0

(a) MobileNetV2 by input resolution on i5-4210U

480 x 360 640 x 480 1280 x 720 1920 x 1080
Video res.

50

60

70

80

90

100

110

120

In
fe

re
nc

e 
tim

e

Width mult.
0.35
0.5
0.75
1.0

(b) MobileNetV2 by width multiplier on i5-4210U

480 x 360 640 x 480 1280 x 720 1920 x 1080
Video res.

40

60

80

100

120

In
fe

re
nc

e 
tim

e

Network
MNV3 (large min.)
MNV3 (large)
MNV3 (small min.)
MNV3 (small)

(c) MobileNetV3 on i5-4210U

Figure 2: Inference time of MobileNetV2 and V3 models in the Intel i5-4210U.11
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Figure 3: Inference time of MobileNetV2 and V3 models in the NVIDIA Tesla V100.12
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Table 4: One-way analysis of variance of the inference times achieved by the MobileNets. Values in bold indicate
results that were different with p ≤ 5%.

Network Parameter Hardware F p

MobileNetV2

Input res. Core i5 1.476 0.2176
V100 6.773 0.0001

Width mult. Core i5 0.639 0.5921
V100 2.606 0.0577

Video res. Core i5 63.744 1.0595 ·10−20

V100 14.929 9.8719 ·10−8

MobileNetV3
Width mult. Core i5 2.471 0.1302

V100 1.873 0.1848

Video res. Core i5 7.350 0.0016
V100 1.885 0.1646

constrained CPU. Lastly, in all cases, a change in the width multiplier of the networks did not result in a significant
change in their inference times.

To discover which combinations of the aforementioned parameters actually resulted in lower inference times for each
neural network, the ANOVA tests were followed by a series of Tukey’s Honestly Significant Difference (HSD) tests,
whose results are displayed in Figures 4 and 5. Whenever there is no vertical overlap between the intervals covered by
two pairs of lines, their distributions are considered different with a statistical significance greater than 95%. It can be
seen on Figure 4a that MobileNets with input resolutions of 128 and 224 pixels achieve lower inference time than the
ones with input resolutions of 96 and 192 pixels.

The other subfigures confirm that feeding video frames in a natively low resolution to the MobileNets result in lower
inference times. In all cases, the optimal video resolutions are 640× 480 and 480× 360, in contrast with 1920× 1080.
In the case of MobileNetV2 on CPU, 1280 × 720 achieves a statistically significant compromise among the two
aforementioned groups.

5.2 Discussion

The results presented in Tables 1 and 2 show that MobileNetV2 models with α ≤ 0.5 do not achieve the top results
with regards to AP. While some of the V2 models do achieve low inference times (in bold in Table 1), the ANOVA
results from Table 4 indicate that the differences in latency resulting from a change in the α hyperparameter are not
statistically significant, which leads us to the conclusion that, under our experimental settings, MobileNetV2 models
with α > 0.5 should be prioritized.

Another interesting observation is that MobileNetV3 is the only model whose latency lowered (in comparison with the
other models) in the less powerful CPU, in comparison with the server CPU and GPU. This is a strong indication that
the optimizations performed in MobileNetV3 [48] on top of MobileNetV2 and MnasNet, which initially targeted a
performance gain in ARM-based mobile phones, are also visible in Intel-based x86 processors.

Lastly, since the MobileNets studied in this work receive images with a maximum input size of 224× 224 pixels, the
observation that using video feeds with smaller resolutions boost the inference time of all MobileNets is a clear indicator
that low latency object detection applications should always prioritize using the lowest video resolution possible to
avoid any overhead related to processing or resizing high definition images before each forward pass.

As for YOLO, its high latency in CPUs can be attributed to the optimization of its canonical implementation towards
single GPU systems [5]. More specifically, the particularly high latency in low power CPUs achieved in this work for
all YOLO models is in line with related work that also performed inference time measurements of the same models,
albeit in different hardware [46].

6 Conclusions

This work presented a comparative analysis of the precision and inference time of reduced CNN architectures and
single-stage object detectors in the task of single-class object detection under constrained hardware situations. Multiple
MobileNetV2 and V3 models, as well as YOLOv3, YOLOv4 and their tiny counterparts were trained to detect soccer
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Figure 4: Tukey’s HSD tests applied to the MobileNet groups who had p ≤ 5% in the ANOVA tests on the Intel Core
i5-4210U.

balls and tested in a computer with an Intel Core i5-4210U CPU and no graphics capabilities, following the use case of
a humanoid robot operating with an embedded computer.

We used open implementations of all networks, provided either from the TensorFlow Object Detection API [48] or from
the official YOLO repositories [5] and compared their average precision in a test data set, as well as their inference
times in the constrained CPU setting, an unconstrained CPU setting and a server-class GPU, when operating on videos
under multiple resolutions.

Results have shown that MobileNetV2 models with high width multipliers have the best trade-off between average
precision and inference time in unconstrained hardware settings, being suitable when executing inference in remote
servers is an option. However, while MobileNetV3 models did not show remarkable performance when operating in
the unconstrained hardware settings, a performance boost was observed when inference was executed under a local,
constrained, CPU-only scenario. Lastly, the official implementations of YOLO and TinyYOLO, being optimized for
inference in GPUs, displayed poor results in our low-end Intel Core i5-4210U processor.
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